深度學習的數學──用數學開啟深度學習的大門

{{ _getLangText('m_detailInformation_goodsAuthorText') }}涌井良幸,涌井貞美
{{ _getLangText('m_detailInformation_goodsTranslatorText') }}楊瑞龍
{{ _getLangText('m_detailInformation_goodsPublisherText') }}博碩文化股份有限公司
2020年05月04日
ISBN:9789864344802
{{ _getLangText('m_detailInformation_goodsTips1Text') }}
{{ _getLangText('m_detailInformation_goodsActivityText') }}
{{ activityObj.name }}

{{_getLangText("m_detailIntroduction_goodsIntroductionText") }}

【數學王道】01

掌握數學才能開啟深度學習的大門
注重理解才能走向數學應用之大道

許多人在求學時期接觸數學的時候總是意興闌珊,總覺得只要四則運算就能夠應付大部分的日常所需,什麼指數、對數、向量、三角函數,甚至微積分,常常是不求甚解而只求低空飛過。等到機器學習、深度學習等掘起,人們才突然了解到那些數學知識的確是有用的,它們才是這些領域入門的鑰匙。

不論您是曾經放棄過數學,還是想要重溫數學的知識,透過本書都可以讓您迅速重回數學的懷抱。書中擅用比喻的方式,務使讀者能夠從基礎原理開始理解,並佐以簡明扼要的範例加以解說,使讀者循序漸進地理解深度學習的諸多關鍵字,像是:權重、偏壓、啟動函數、梯度下降法、誤差反向傳播法、卷積神經網路......等。搭配清楚且直觀的插圖,就連高中生也看得懂!不管什麼樣的職業或年紀,只要拿起這本書,就能使數學成為您強而有力的武器。

除了理解之外,本書也重視實際動手作。您可以下載書中資源,親自用Excel檔來接觸深度學習的數學操作。輸入不同的數字並觀察其變化,相信會使讀者更能夠了解公式的涵義。

第1章 神經網路的概說
第2章 理解神經網路所需的數學基礎知識
第3章 神經網路的最佳化
第4章 神經網路和誤差反向傳播法
第5章 深度學習和卷積神經網路。

書中使用Excel進行理論驗證,幫助讀者直觀地體驗深度學習的原理。


作者簡介:

湧井良幸,1950年出生於東京,畢業於東京教育大學(現今的筑波大學)數學系,並於千葉縣立高等學校擔任教職。爾後他辭去教職成為一名作家,致力於書籍的寫作。著有《用Excel學深度學習》(合著)、《統計學有什麼用?》等書。

湧井貞美,1952年出生於東京,完成東京大學理學系研究科碩士課程後,陸續擔任富士通、神奈川縣立高等學校的教職員,而後成為獨立的科普作家。著有《用Excel學深度學習》(合著)、《圖解貝葉斯統計入門》等書。