AI讀心數——推薦系統演算法核心程式碼精通

{{ _getLangText('m_detailInformation_goodsAuthorText') }}謝楊易
{{ _getLangText('m_detailInformation_goodsPublisherText') }}深智
2024年10月19日
ISBN:9786267569146
{{ _getLangText('m_detailInformation_goodsTips1Text') }}
{{ _getLangText('m_detailInformation_goodsActivityText') }}
{{ activityObj.name }}

{{_getLangText("m_detailIntroduction_goodsIntroductionText") }}

網際網路快速發展,使用者和內容規模均迅速增長。如何讓使用者找到感興趣的內容成為許多公司的核心問題。推薦系統屬於被動型消費。和搜尋系統是連接使用者和內容的關鍵橋樑。深度學習技術開始進入推薦系統,深度學習的推薦系統顯著提升了內容分發的準確性和使用者體驗,推薦演算法工程師因此進入了一個新的時代。推薦演算法也在迅速發展,從業者需要不斷學習新知識。

 

推薦系統的鏈路很長,包括召回、粗排、精排和重排等多個模組,掌握整體架構並深入理解各個模組的細節是困難且重要的。本書主要介紹推薦演算法技術,涵蓋召回、粗排、精排和重排等模組,讓讀者熟悉推薦演算法的全過程,加深系統化理解,並掌握關鍵技術細節。

 

書中介紹的技術也適用於搜尋和廣告等領域。幫助讀者掌握推薦演算法的整體架構和核心模組的知識框架,以及一些工作必備的經典模型,深入理解其出發點和具體實現方案,並在實際工作中靈活運用。處於資訊爆炸時代的推薦演算法工程師需要不斷學習新知識,接受更多挑戰。希望本書分享的知識和經驗能夠幫助讀者一臂之力。