資料分析師與工程師必讀的技術及職涯實戰指南
本書改編自第 15 屆 iThome 鐵人賽 AI & Data 組優選系列文章《被 dbt 帶入門的數據工作體驗 30 想》及其團隊夥伴作品。四位作者由不同身份和視角出發,分享如何透過 dbt 實踐 Analytics Engineering(分析工程)。
dbt 是一個以 SQL 為基底的開源資料轉換工具,採用軟體工程原則,如版本控制、測試、模組化,讓資料轉換更可靠且高效。本書將帶你動手建立 dbt 專案,親自體驗其優勢。
Analytics Engineering 則是隨著資料產業演化而發展出的新興領域,介於資料分析和資料工程之間,且和兩者的部分任務重疊。
除技術外,書中也會討論資料文化、如何打造資料團隊,以及資料專業的職涯規劃和發展。無論新手或老手,本書都是能為你提供獨到見解的實用指南。
重點摘要
✦ dbt 由淺入深
dbt Cloud 及 dbt Core 實作應用
✦ 動手操作
附範例、語法、操作截圖
✦ 資料分析必備
資料品質及建模最佳實踐
✦ 打造資料文化
資料團隊現代化經典案例
目標讀者
任何工作中使用資料的人。包含:
◆ 參與資料專案的成員,不論你在資料部門,或是支援資料專案的軟體部門。你負責資料轉換成資訊的過程,想嘗試新工具,解決原本資料流程遇到的痛點。
◆ 在工作上經常使用資料的角色,例如:行銷、Sales、PM、財務、營運人員等。你對資料、報表有好奇心、想知道資料轉換成資訊的過程,並且喜歡動手操作。